
Lab 03 – Exploring and visualising data

ENVX1002 Handbook

Semester 1, 2025

💡 Learning outcomes

At the end of this computer practical, students should be able to:

• ☐ Import and prepare data for visualisation
• ☐ Create basic plot types using ggplot2 (histograms, boxplots, bar plots, scatterplots)
• ☐ Customise plots with appropriate labels, colours, and themes
• ☐ Identify and visualise distribution properties (normality, skewness, kurtosis)
• ☐ Interpret visualisations to draw meaningful conclusions
• ☐ Export and save plots for reports

Before we begin
For this lab, you will need to:

1. Create a new Quarto document in your project folder (or create a new RStudio project) to
simplify file management and reproducibility

2. Download the data files from the links provided in Exercise 1
3. Make sure you have the following packages installed and loaded:

• tidyverse: For data manipulation and visualization (includes ggplot2)
• moments: For calculating skewness and kurtosis
• patchwork: For combining multiple plots

You can install packages using install.packages("package_name") if needed, and load them
with library(package_name).

Exercise 1: Dataset exploration

Exploring the pie_crab dataset
In this lab, we’ll work with two environmental datasets. They can be downloaded from the links
below:

• pie_crab.csv: Crab size measurements across different sites and latitudes
• hbr_maples.csv: Maple seedling measurements from different watersheds

1

../index.qmd
data/pie_crab.csv
data/hbr_maples.csv

By now, you should know how to use read_csv() to read these datasets into R. If you need a
refresher, refer to the previous labs or ask for help from a demonstrator (if available).

Let’s start by exploring the pie_crab dataset. We’ve done this before, but it’s always good to re-
fresh our memory as these functions are extremely common to use.

• The str() function shows us the structure of the dataset, including variable names, types, and
a preview of the values.

• The head() function shows the first six rows of the dataset, giving us a quick look at the data.
• The summary() function provides descriptive statistics for each variable, including minimum,

maximum, mean, and quartiles for numeric variables.

str(pie_crab)
head(pie_crab)
summary(pie_crab)

💡 Question 1

What variables are in the dataset? What are the data types of each variable? Are there any
missing values? What are the ranges of the numeric variables?

From our exploration, we can see that the pie_crab dataset contains information about:

• date: When the crabs were measured
• latitude: The latitude where the crabs were collected
• site: The specific collection site
• size: The size of the crabs in millimeters
• air_temp: Air temperature in degrees Celsius
• water_temp: Water temperature in degrees Celsius

Identifying factors in the data
One of the first steps in data exploration is to determine if your data types are recognised cor-
rectly by R. Looking at the output of str() can help you identify variables that might be better
represented as different data types.

In our dataset, site and name are character variables with repeating values. When categorical
variables like these have a limited number of possible values that repeat throughout the dataset,
they’re good candidates to be converted to factors. Factors are R’s way of representing categorical
data efficiently.

We can check how many unique values these variables have using the unique() function:

unique(pie_crab$site)
unique(pie_crab$name)

2

For a dataset with 392 observations, having only a few unique sites and names suggests that these
variables should be factors. Let’s count exactly how many unique values we have:

length(unique(pie_crab$site))
length(unique(pie_crab$name))

We can convert these character variables to factors using the factor() or as.factor() functions:

Convert site and name to factors
pie_crab$site <- factor(pie_crab$site)
pie_crab$name <- factor(pie_crab$name)

Alternatively, use the as.factor() function:
pie_crab$site <- as.factor(pie_crab$site)
pie_crab$name <- as.factor(pie_crab$name)
We have intentionally commented out (#) the code to avoid running it

Check the structure again to confirm the conversion
str(pie_crab)

Notice how we’ve converted the specific variables to factors and used the assignment operator <-
to update the dataset. This is a common pattern in R, where we update the dataset in place. The
output of str() now shows these variables as factors with their levels (unique values) listed.

Converting to factors is important because:

1. It makes R treat the data appropriately in statistical analyses
2. It can make visualisations more informative
3. It improves memory efficiency for large datasets

Exercise 2: Building visualizations with ggplot2

The grammar of graphics
The ggplot2 package is based on the “grammar of graphics,” a framework that breaks visualisations
into components, similar to how grammar breaks language into parts of speech. This approach
makes it possible to create complex visualisations by combining simple elements.

The key components (or layers) include:

• Data: The dataset being visualised
• Aesthetics: Mappings from data variables to visual properties
• Geometries: The shapes used to represent the data
• Facets: Subplots that show different subsets of the data
• Statistics: Transformations of the data (e.g., counts, means)
• Coordinates: The space in which the data is plotted
• Themes: Visual styling of non-data elements

3

Let’s learn how to create visualisations using this approach by building a plot step by step, ex-
plaining each component along the way. As you follow along, you are improving the code
that produces the plot – not re-writing it – at each step.

Step 1: The canvas
Every ggplot2 visualisation starts with a blank canvas:

Start with an empty canvas
ggplot()

This creates an empty plotting space. It doesn’t show anything yet because we haven’t specified
any data or how to visualise it.

Step 2: Adding data
Next, we tell ggplot2 what data to use. Ideally the data is a data.frame or tibble object (which
you will know by using str() previously):

Add data to the plot
ggplot(data = pie_crab)

We’ve now told ggplot2 to use the pie_crab dataset, but we still cannot see anything because we
have not specified which variables to plot – or how to represent them.

Step 3: Mapping aesthetics
Aesthetics map variables in your data to visual properties in the plot. They are a function aes()
on their own. Think of aesthetics as how you woul define x, y and other dimensions in the plot.

Map variables to visual properties
ggplot(data = pie_crab, mapping = aes(x = size))

Here, we’ve mapped the size variable to the x-axis. This variable is something that exists in the
pie_crab data frame. We still cannot see any data points because we haven’t specified how to
represent the data (e.g., as points, bars, or lines).

Step 4: Adding a Geometry
Geometries determine how the data is represented visually. They are functions that are prefixed
by geom_* so that users know what they are meant to do. In most cases it is clear what type of
plot is being create by reading the name of the geometry function(s) in the plot code.

Add a histogram geometry
ggplot(data = pie_crab, mapping = aes(x = size)) +
 geom_histogram()

4

Now we can see the data! We’ve added a histogram geometry (geom_histogram()), which counts
the number of observations falling into bins along the x-axis. The + operator adds layers to the
plot.

Notice the message about the default bin width. ggplot2 automatically chose 30 bins, but we can
adjust this.

Step 5: Customizing the Geometry
Let’s customize our histogram:

Customize the histogram
ggplot(data = pie_crab, mapping = aes(x = size)) +
 geom_histogram(bins = 20, fill = "skyblue", color = "black")

We’ve made several changes:

• bins = 20: Changed the number of bins to 20
• fill = "skyblue": Set the fill color of the bars to sky blue
• color = "black": Set the outline color of the bars to black

These are fixed properties applied to all bars, not mappings from data variables. For colours you
may search “r colours” in your web browser to see what available colours you can use (it’s a lot).

Step 6: Adding Labels and Titles
Good visualisations have clear labels. Titles are optional – but the option is available if you need
it. We can add all of these in the next layer using the labs() function:

Add informative labels
ggplot(data = pie_crab, mapping = aes(x = size)) +
 geom_histogram(bins = 20, fill = "skyblue", color = "black") +
 labs(
 title = "Distribution of Crab Sizes",
 x = "Size (mm)",
 y = "Count"
)

The labs() function adds various text elements to the plot:

• title: The main title of the plot
• x: The x-axis label
• y: The y-axis label

Step 7: Applying a Theme
Themes control the overall appearance of the plot:

Add a theme for consistent styling
ggplot(data = pie_crab, mapping = aes(x = size)) +

5

 geom_histogram(bins = 20, fill = "skyblue", color = "black") +
 labs(
 title = "Distribution of Crab Sizes",
 x = "Size (mm)",
 y = "Count"
) +
 theme_minimal()

The theme_minimal() function applies a minimalist theme with a white background and subtle
grid lines. Other common themes include:

• theme_classic(): No grid lines, simple axes
• theme_light(): Light background with subtle grid lines
• theme_dark(): Dark background for presentations

Bonus: Adding multiple geometries
One of the powerful features of ggplot2 is the ability to layer multiple geometries:

Add a density curve on top of the histogram
ggplot(data = pie_crab, mapping = aes(x = size)) +
 geom_histogram(aes(y = after_stat(density)),
 bins = 20,
 fill = "skyblue", color = "black"
) +
 geom_density(color = "red", linewidth = 1) +
 labs(
 title = "Distribution of Crab Sizes",
 x = "Size (mm)",
 y = "Density"
) +
 theme_minimal()

In this plot:

• We’ve changed the y-axis of the histogram to show density instead of count using aes(y
= after_stat(density))

• We’ve added a density curve with geom_density()
• We’ve set the density curve color to red and increased its line width

6

💡 Question 2

1. What’s the difference between setting a fixed property (like fill = "blue") and mapping
a variable to an aesthetic (like aes(fill = site))?

2. How would you modify the histogram to have more or fewer bins? Use ?geom_histogram
to help you think of an answer.

3. What would happen if you changed the order of the geom_histogram() and
geom_density() layers?

These questions can typically be answered by making changes to the code to view the differences.

Exercise 3: Analysing environmental variables
Now that we understand the grammar of graphics approach, let’s analyse a different variable in
our dataset.

Examining water temperature distribution
Let’s examine the distribution of water temperatures across our sampling sites:

Create a basic histogram of water temperatures
ggplot(pie_crab, aes(x = water_temp)) +
 geom_histogram(bins = 15) +
 labs(
 title = "Distribution of Water Temperatures",
 x = "Water Temperature (°C)",
 y = "Count"
)

The histogram shows us the frequency distribution of water temperatures. We can see the shape
of the distribution, including any skewness or unusual patterns.

Add a density curve
ggplot(pie_crab, aes(x = water_temp)) +
 geom_histogram(aes(y = after_stat(density)),
 bins = 15,
 fill = "lightblue", colour = "black"
) +
 geom_density(colour = "red") +
 labs(
 title = "Distribution of Water Temperatures",
 x = "Water Temperature (°C)",
 y = "Density"
)

Adding a density curve helps us see the overall shape of the distribution more clearly.

7

💡 Question 3

What is the shape of the distribution of water temperatures? Does the distribution appear to
be normal? Are there any outliers?

Skewness and Kurtosis
To quantify the shape of the water temperature distribution, we can calculate skewness and kur-
tosis:

Calculate skewness and kurtosis for water temperature
skewness_value <- skewness(pie_crab$water_temp)
kurtosis_value <- kurtosis(pie_crab$water_temp)
skewness_value
kurtosis_value

Interpreting these values:

• Skewness measures the asymmetry of the distribution:

‣ 0 = symmetric (like a normal distribution)
‣ More than, > 0 = right-skewed (tail extends to the right)
‣ Less than, < 0 = left-skewed (tail extends to the left)

• Kurtosis measures the “tailedness” of the distribution:

‣ 3 = normal distribution (in the moments package, this is sometimes normalised to 0)
‣ More than, > 3 = leptokurtic (heavy-tailed, more outliers)
‣ Less than, < 3 = platykurtic (light-tailed, fewer outliers)

The skewness value of approximately 0.5 confirms our visual observation that the water temper-
ature distribution is moderately right-skewed. The kurtosis value of approximately 2.5 indicates
the distribution has slightly lighter tails than a normal distribution.

These numerical measures help us quantify what we observe visually in the histograms and den-
sity plots. Now that we understand the overall distribution of our data, let’s explore how it varies
across different groups.

Exercise 4: Comparing groups
Now that we’ve examined the overall distribution of crab sizes, let’s compare sizes across differ-
ent groups.

Creating boxplots to compare sites
Boxplots are excellent for comparing distributions between two or more groups:

Create boxplots of crab sizes by site
ggplot(pie_crab, aes(x = site, y = size)) +

8

 geom_boxplot(fill = "skyblue") +
 labs(
 title = "Crab Sizes by Site",
 x = "Site",
 y = "Size (mm)"
)

A boxplot shows:

• The median (middle line)
• The interquartile range (IQR) from the 25th to 75th percentile (the box)
• The whiskers (typically extend to 1.5 × IQR)
• Outliers (points beyond the whiskers)

To see the actual data points alongside the boxplots we can add another geometric layer. You
can see how it may or may not be useful to readers. In most cases adding the data points is not
necessary, but in some cases it could be useful in the exploration phase (i.e. not the final plot for
publication).

Add points to see the actual data
ggplot(pie_crab, aes(x = site, y = size)) +
 geom_boxplot(fill = "skyblue", alpha = 0.5) +
 geom_jitter(width = 0.2, alpha = 0.5) +
 labs(
 title = "Crab Sizes by Site",
 x = "Site",
 y = "Size (mm)"
)

We’ve added:

• geom_jitter() to add individual data points with a slight horizontal jitter to avoid overplotting
• alpha = 0.5 to make both the boxplots and points semi-transparent
• width = 0.2 to control the amount of horizontal jittering

💡 Question 4

How do crab sizes vary across different sites? Which site has the largest median crab size?
Which site shows the most variability in crab sizes? Are there any outliers at specific sites?
Answer these questions in a descriptive manner using the plot.

Here we are exercising our ability to see patterns from data visualisations and using them to make
certain observations about the data.

Exploring the relationship between latitude and size
Let’s examine if there’s a relationship between latitude and crab size:

9

Create a scatterplot of size vs. latitude
ggplot(pie_crab, aes(x = latitude, y = size)) +
 geom_point(alpha = 0.5) +
 labs(
 title = "Crab Size vs. Latitude",
 x = "Latitude",
 y = "Size (mm)"
)

Scatterplots show the relationship between two continuous variables. Each point represents a
single observation.

To help visualise the trend, we can add a trend line (something that we will cover in greater detail
once we look at linear models in Week 7):

Add a trend line
ggplot(pie_crab, aes(x = latitude, y = size)) +
 geom_point(alpha = 0.5) +
 geom_smooth(method = "lm", se = TRUE) +
 labs(
 title = "Crab Size vs. Latitude",
 x = "Latitude",
 y = "Size (mm)"
)

We’ve added:

• geom_smooth(method = "lm") to add a linear regression line
• se = TRUE to include the standard error as a shaded confidence band

💡 Question 5

Is there a relationship between latitude and crab size?

Exercise 5: Faceting and grouping
So far, we’ve created separate plots for different analyses. Now, let’s explore techniques for com-
paring multiple groups or variables within a single plot.

Exploring the hbr_maples dataset
Let’s switch to our second dataset, which contains measurements of maple seedlings from differ-
ent watersheds:

Examine the structure of the maples dataset
str(hbr_maples)

10

View the first few rows
head(hbr_maples)

Get a summary of the variables
summary(hbr_maples)

Now, let’s create histograms of stem length by watershed using faceting:

Create histograms of stem length by watershed
ggplot(hbr_maples, aes(x = stem_length)) +
 geom_histogram(bins = 20, fill = "forestgreen", colour = "black") +
 facet_wrap(~watershed) +
 labs(
 title = "Distribution of Stem Lengths by Watershed",
 x = "Stem Length (mm)",
 y = "Count"
)

hbr_maples |>
 select(watershed, stem_length) |>
 group_by(watershed) |>
 summarise(median = median(stem_length, na.rm = TRUE))

The facet_wrap() function creates separate panels for each value of the specified variable. This
allows us to compare distributions across groups.

💡 Question 6

How do stem lengths differ between watersheds? Which watershed shows more variability
in stem lengths? Are the distributions similarly shaped? Use only the visualisations to answer
these questions.

Comparing leaf area and stem length
Let’s examine the relationship between leaf area and stem length, comparing across watersheds:

Create a scatterplot of leaf area vs. stem length, coloured by watershed
ggplot(hbr_maples, aes(x = stem_length, y = corrected_leaf_area, colour =
watershed)) +
 geom_point(alpha = 0.7) +
 labs(
 title = "Leaf Area vs. Stem Length",
 x = "Stem Length (mm)",
 y = "Corrected Leaf Area (cm²)",

11

 colour = "Watershed"
)

Here, we’ve mapped the watershed variable to the colour aesthetic, which automatically creates
a color-coded legend.

Let’s add separate trend lines for each watershed:

Add separate trend lines for each watershed
ggplot(hbr_maples, aes(x = stem_length, y = corrected_leaf_area, colour =
watershed)) +
 geom_point(alpha = 0.7) +
 geom_smooth(method = "lm", se = FALSE) +
 labs(
 title = "Leaf Area vs. Stem Length",
 x = "Stem Length (mm)",
 y = "Corrected Leaf Area (cm²)",
 colour = "Watershed"
)

When we include colour = watershed in the global aesthetics, ggplot2 automatically applies this
grouping to all geometries, including geom_smooth(). This creates separate trend lines for each
watershed.

💡 Question 7

Is there a relationship between stem length and leaf area? Does this relationship differ be-
tween watersheds? What might explain these differences from an ecological perspective?

Exercise 6: Bonus take-home
These exercises are designed for you to practice the visualisation techniques we’ve covered in this
lab. You can complete them during the lab if you finish early, or at home for additional practice.

Basic visualisation practice
1. Create a histogram of the air_temp variable in the crabs dataset. Calculate and interpret its

skewness and kurtosis.
2. Create boxplots comparing the leaf_dry_mass between watersheds in the maples dataset.

What do you observe?
3. Create a scatterplot examining the relationship between stem_dry_mass and leaf_dry_mass

in the maples dataset, with points coloured by watershed.

Advanced challenge: patchwork
The patchwork package allows you to combine multiple plots into a single figure. This is useful
for creating complex visualisations that tell a story about your data.

12

Load the patchwork package
library(patchwork)

Let’s create a few plots and then combine them:

Create multiple plots
p1 <- ggplot(pie_crab, aes(x = size)) +
 geom_histogram(fill = "skyblue", colour = "black") +
 labs(title = "Distribution of Crab Sizes")

p2 <- ggplot(pie_crab, aes(x = latitude, y = size)) +
 geom_point() +
 geom_smooth(method = "lm") +
 labs(title = "Size vs. Latitude")

p3 <- ggplot(pie_crab, aes(x = site, y = size)) +
 geom_boxplot(fill = "skyblue") +
 labs(title = "Size by Site")

Combine plots (this is patchwork in action!)
p1 / (p2 + p3)

The patchwork syntax is intuitive:

• / arranges plots vertically (one above the other)
• + arranges plots horizontally (side by side)
• You can use parentheses to control the layout

Now, try these exercises:

4. Create a combined plot using patchwork that shows:
• A histogram of stem lengths
• A scatterplot of stem length vs. leaf area
• Boxplots of stem lengths by watershed
• Arrange these plots in a 2x2 grid

5. Create a combined plot that tells a story about the relationship between temperature and crab
size:
• A scatterplot of air temperature vs. crab size
• A scatterplot of water temperature vs. crab size
• A boxplot of crab sizes by site
• Arrange the scatterplots side by side and the boxplot below them

Summary
In this lab, we’ve explored how to create and customize various types of visualisations using gg-
plot2. We’ve learned:

1. The grammar of graphics approach to building visualisations layer by layer

13

2. How to create and interpret histograms, density plots, boxplots, and scatterplots
3. How to quantify and interpret distribution properties like skewness and kurtosis
4. How to compare groups using boxplots and faceting
5. How to examine relationships between variables using scatterplots and trend lines
6. How to combine multiple plots using the patchwork package

These skills will be valuable for exploring and presenting data in future labs and assignments.

Additional Resources
• R for Data Science - Data Visualisation chapter
• ggplot2 documentation
• patchwork package documentation
• R Graph Gallery - Examples of various visualisations in R
• Cookbook for R - Graphs - Recipes for common visualisation tasks

14

https://r4ds.had.co.nz/data-visualisation.html
https://ggplot2.tidyverse.org/
https://patchwork.data-imaginist.com/
https://www.r-graph-gallery.com/
http://www.cookbook-r.com/Graphs/

	Before we begin
	Exercise 1: Dataset exploration
	Exploring the pie_crab dataset
	Identifying factors in the data

	Exercise 2: Building visualizations with ggplot2
	The grammar of graphics
	Step 1: The canvas
	Step 2: Adding data
	Step 3: Mapping aesthetics
	Step 4: Adding a Geometry
	Step 5: Customizing the Geometry
	Step 6: Adding Labels and Titles
	Step 7: Applying a Theme
	Bonus: Adding multiple geometries

	Exercise 3: Analysing environmental variables
	Examining water temperature distribution
	Skewness and Kurtosis

	Exercise 4: Comparing groups
	Creating boxplots to compare sites
	Exploring the relationship between latitude and size

	Exercise 5: Faceting and grouping
	Exploring the hbr_maples dataset
	Comparing leaf area and stem length

	Exercise 6: Bonus take-home
	Basic visualisation practice
	Advanced challenge: patchwork

	Summary
	Additional Resources

