
Lab 07 – Non-parametric tests & Chi-squared tests

ENVX1002 Handbook

Semester 1, 2025

💡 Learning Outcomes

• Learn to use R to perform a Wilcoxon signed-rank test and a Mann-Whitney U test.
• Learn to use R to calculate a chi-squared test for:

‣ Test of proportions
‣ Test of independence

• Learn how to interpret statistical output.

Before we begin
Create your Quarto document and save it as Lab-07.qmd or similar. There are no data files to
download for this lab.

Quick introduction to non-parametric tests
Non-parametric tests are statistical tests that do not assume a specific distribution for the data.
They are often used when the assumptions of parametric tests (such as normality) are not met.
Non-parametric tests are also useful when dealing with ordinal data or when the sample size is
small.

The two non-parametric tests we will cover in this lab are: 1. Wilcoxon signed-rank test - used to
compare one sample to a known value or to compare two related samples, matched samples, or
repeated measurements on a single sample to assess whether their population mean ranks differ
(similar to a one sample t-test or paired t-test).

Exercise 1: dog pain (walk-through)

Background
A study measures dogs’ pain using the Glasgow CMPS-SF scale before and after medication.

before <- c(7, 6, 8, 5, 9, 7, 6, 8, 7, 5)
after  <-  c(4, 5, 6, 3, 7, 5, 4, 6, 5, 3)

## create a data frame
pain <- data.frame(
  dog_ID = 1:length(before),
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  before = before,
  after = after,
  diff = after - before
)

EDA

library(ggpubr)
# Create a comparative boxplot of the before and after pain scores
pain_long <- pivot_longer(pain, cols = c(before, after), 
                          names_to = "time", values_to = "score")

ggboxplot(pain_long, x = "time", y = "score",
          color = "time", palette = c("#00AFBB", "#E7B800"),
          add = "jitter") +
 labs(title = "Pain Scores Before and After Medication",
       x = "Time", y = "Pain Score")

It looks like the pain scores are lower after medication. But we need to test this statistically.

Hypothesis (H)
The null hypothesis is that there is no difference in pain scores before and after treatment. The
alternative hypothesis is that there is a difference in pain scores before and after treatment.

Assumptions (A)

ggqqplot(pain$diff, main = "QQ-Plot of Differences"
         , ylab = "Differences")

We can see that the pain scores are not normally distributed, they are highly kurtotic (you can
try shapiro.test on the difference).

The Wilcoxon signed-rank test is a non-parametric test that does not assume normality, so we
can use it to compare the pain scores before and after treatment.

The assumptions of the Wilcoxon signed-rank test are: 1. In this case the data are paired (i.e., the
same subjects are measured before and after treatment). 2. The differences between the paired
observations are continuous/ordinal and symmetric about the median (looking at the boxplots,
this is the case).

Test (T)

# Perform the Wilcoxon signed-rank test
wilcox.test(pain$before, pain$after, paired = TRUE)
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The output shows the test statistic (V) and the p-value. The test statistic is the sum of the ranks of
the positive differences (after - before). The p-value is the probability of observing a test statistic
as extreme as the one obtained, assuming that the null hypothesis is true.

We also see that the test is Wilcoxon signed rank test with continuity correction. This is because
the test is based on ranks, and the continuity correction is applied to adjust for the fact that we
are using a discrete distribution to approximate a continuous distribution.

P-value (P)
We can see that the p-value is less than 0.05, so we reject the null hypothesis and conclude that
there is a significant difference in pain scores before and after treatment.

Conclusion (C)
Given that the p-value is significant (P<0.05) and looking at the output of the boxplot, we can
conclude that the pain scores are significantly lower after treatment.

Comparison
Now analyse the data with a paired t-test. What do you find? Key is to compare the p-values. If
you notice the p-value in the t-test is smaller, this indicates that the t-test is more powerful than
the Wilcoxon signed-rank test. This is because the t-test assumes normality, and in this case, the
data is not normally distributed. So you are more likely to make a type I error (reject the null
hypothesis when it is true) with the t-test than with the Wilcoxon signed-rank test.

Exercise 2: Chi-squared tests

Quick introduction
The chi-square test is used to compare the observed distribution to an expected distribution, in a
situation where we have two or more categories in discrete data. In other words, it compares
multiple observed proportions to expected probabilities.

The formula is:

𝜒2 =∑
𝑘

𝑖=1

(𝑂𝑖 −𝐸𝑖)
2

𝐸𝑖

where 𝑂𝑖 is the observed frequency, 𝐸𝑖 is the expected frequency for each category, and 𝑘 is the
number of categories.

For more information about the technique, consult your lecture slides and tutorial 7.

Wild tulips (walk-through)

Background
Suppose we collected wild tulips and found that 81 were red, 50 were yellow and 27 were white.
Are these colours equally common?
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If these colours were equally distributed, the expected proportion would be 1/3 for each
of the colour. Therefore, we want to test if the observed proportions are significantly different
from the expected proportions.

The data is below.

tulip <- c(81, 50, 27)

Instructions
Utilise the HATPC process and test the hypothesis that the proportion of flower colours of tulips
are equally common, assuming that the samples are independent. We can explore the data as we
check the assumptions of the test.

HATPC:

• Hypothesis
• Assumptions
• Test (statistic)
• P-value
• Conclusion

 Level of significance

The level of significance is usually set at 0.05. This value is generally accepted in the sci-
entific community and is also linked to Type 2 errors, where choosing a lower significance
increases the likelihood of failing to reject the null hypothesis when it is false.

Hypotheses
What are the null hypothesis and alternative hypotheses?

Click here to view answer
• H₀: There is no significant difference between the observed and the expected proportions of

flower colours.
• H₁: There is a significant difference between the observed and the expected proportions of flower

colours.

Assumptions
Recall that the assumptions of the 𝜒2 test are:

1. No cell has expected frequencies less than 1
2. No more than 20% of cells have expected frequencies less than 5
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 Note

In the case that the above assumptions are violated then the probability of a type 1 error oc-
curring (rejecting the null hypothesis when it is true, i.e. false positive) increases.

To calculate expected frequencies, we first calculate the total number of tulips and then divide by
the number of categories.

expected <- rep(sum(tulip) * 1 / 3, 3) #rep function replicates the value we're
calculating inside the brackets
expected

Does the data satisfy the assumptions of a 𝜒2 test?

Click here to view answer Yes, as expected frequencies > 5.

Test statistic
The chisq.test() function in R is used to calculate the chi-squared test.

res <- chisq.test(tulip, p = c(1 / 3, 1 / 3, 1 / 3))
res

Note that we could check our assumptions post-analysis by checking the expected frequencies
stored in the expected object of the output:

res$expected

P-value
Write down how you should report the critical value, p-value and df in a scientific paper?

Click here to view answer 𝜒2 = 27.9, 𝑑.𝑓. = 2, 𝑝 < 0.01

Conclusions
Based on the p-value, do we accept or reject the null hypothesis?

Click here to view answer We reject the null hypothesis as the p-value is less than 0.05.

Now write a scientific (biological) conclusion based on the outcome.

Click here to view answer There is a significant difference in the proportion of flower colours of
tulips (𝜒2 = 27.9, 𝑑.𝑓. = 2, 𝑝 < 0.01).

5



Exercise 3: hermit crabs

Background
In a study of hermit crab behaviour at Point Lookout, North Stradbroke Island, a random sample
of 3 types of gastropod shells was collected. Each shell was then scored as being either occupied
by a hermit crab or empty. Do hermit crabs prefer a certain shell?

Shell species Occupied Empty

Austrochochlea 47 42

Bembicium 10 41

Cirithid 125 49

The data is stored in a table object in R below. Note that it is different from a data.frame object.
You can verify this by using the str() or class() functions.

crabs <- as.table( #Make a table with values for each row
  rbind(
    Aus = c(47, 42),
    Bem = c(10, 41),
    Cir = c(125, 49)
  )
)

colnames(crabs) <- c("Occupied", "Empty") #Add column names to table
str(crabs)
crabs

Data exploration
Since we have a multi-dimensional dataset, we can try to plot the data to visualise it.

A mosaic plot is a graphical representation of the data in a two-way contingency table. It is a way
of visualising the relationship between two categorical variables.

Try the code below. Can you interpret the plot?

# mosaic plot of crabs
mosaicplot(crabs, main = "Hermit crabs and shell species")

Click here to view interpretation The plot shows that the distribution of hermit crabs in the differ-
ent shell species is not equal. The majority of hermit crabs are found in the Cirithid shell species,
followed by Austrochochlea and Bembicium. This can be observed by the width of the boxes in
the plot.
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There are also differences in the number of empty shells in the different shell species. The Be-
mbicium shell species has the highest number of empty shells, followed by Austrochochlea and
Cirithid. This can be observed by the height of the boxes in the plot.

HATPC Analysis
Now it is your turn to test the hypothesis that the three shell species are equally preferred by
hermit crabs. Follow the HATPC process with the following questions in mind (but you don’t
have to answer them individually):

1. What are the null hypothesis and alternative hypotheses?
2. Does the data satisfy the assumptions of a 𝜒2 test?
3. How should you report the critical value, p-value and df in a scientific paper?
4. Based on the p-value, do we accept or reject the null hypothesis?
5. Write a scientific (biological) conclusion based on the outcome.

Take your time, and when you are ready, check your answers with your demonstrators.

Exercise 4: pregnancies

Quick introduction
The Mann-Whitney U test (also called the Wilcoxon rank-sum test) is a non-parametric alterna-
tive to the independent samples t-test. It’s used to compare two independent groups when the
data doesn’t meet the assumptions for a t-test, particularly when:

• The data is not normally distributed
• The sample sizes are small
• The data is ordinal rather than continuous

The test works by ranking all observations from both groups together, then comparing the sum
of ranks between the two groups. If there’s a significant difference in these rank sums, it suggests
that the distributions of the two groups differ.

Background
In a medical study, researchers measured the permeability constants of the human chorioamnion
(a placental membrane) between different gestational ages. They collected samples from:

• Term pregnancies (x): pregnancies at full term (around 40 weeks)
• Early pregnancies (y): pregnancies between 12 to 26 weeks gestational age

The researchers wanted to test if the permeability of the membrane is greater at term compared
to earlier in pregnancy. Higher permeability might indicate changes in the membrane’s function
as pregnancy progresses.

# Permeability constants at term (x)
term <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)

# Permeability constants at 12-26 weeks (y)
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early <- c(1.15, 0.88, 0.90, 0.74, 1.21)

# Create a data frame for visualisation
placenta <- data.frame(
  permeability = c(term, early),
  group = factor(c(rep("Term", length(term)), rep("Early", length(early))))
)

EDA
Let’s visualise the data using boxplots to see if there are visible differences between the two
groups:

# Create a comparative boxplot
ggplot(placenta, aes(x = group, y = permeability, fill = group)) +
  geom_boxplot() +
  geom_jitter(width = 0.2, alpha = 0.6) +
  labs(title = "Placental Membrane Permeability by Gestational Age",
       x = "Pregnancy Stage", 
       y = "Permeability Constant") +
  theme_minimal()

Also, let’s check if the data is normally distributed using QQ plots:

# QQ plots for both groups
par(mfrow = c(1, 2))
qqnorm(term, main = "QQ Plot for Term Pregnancies")
qqline(term)
qqnorm(early, main = "QQ Plot for Early Pregnancies")
qqline(early)

Hypothesis (H)
Based on the research question, we can formulate the following hypotheses:

• H₀: The permeability of the membrane at term is not greater than the permeability at earlier
stages (12-26 weeks).

• H₁: The permeability of the membrane at term is greater than the permeability at earlier stages
(12-26 weeks).

Note that this is a one-sided test, as we’re specifically interested in whether the permeability is
greater at term, not just whether it differs.

Assumptions (A)
The Mann-Whitney U test has the following assumptions:

1. The observations from both groups are independent of each other.
2. The observations are ordinal (i.e., can be ranked).
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3. The distributions of both populations have the same shape (though this is relaxed for large
samples).

From our EDA, we can see that:

• The sample sizes are small (10 for term and 5 for early pregnancies).
• The QQ plots suggest that normality might be questionable, especially with such small sample

sizes.
• The observations are certainly independent as they come from different individuals.

Given these observations, the Mann-Whitney U test is an appropriate choice over a t-test. Note
that we may run a formal test for normality (e.g., Shapiro-Wilk test) if we wanted to be thorough,
but the QQ plots already suggest that normality is not a strong assumption here and the Mann-
Whitney U test is robust to deviations from normality. Even if the data were normally distributed,
the Mann-Whitney U test would still be valid – just less powerful than a t-test (i.e., it would have
a higher chance of making a type II error, or an error of failing to reject the null hypothesis when
it is false).

Test (T)
We’ll use the wilcox.test() function to perform the Mann-Whitney U test. Since we’re interested
in whether the permeability is greater at term, we’ll use a one-sided alternative hypothesis:

# Perform the Mann-Whitney U test
wilcox.test(term, early, alternative = "greater")

We can also use the large-sample approximation method (without continuity correction) as de-
scribed by Hollander & Wolfe:

# Mann-Whitney U test with large sample approximation
wilcox.test(term, early, alternative = "greater",
            exact = FALSE, correct = FALSE)

P-value (P)
The p-value from the test is 0.1914, which is greater than our significance level of 0.05.

Conclusion (C)
Based on the results of the Mann-Whitney U test, we fail to reject the null hypothesis. There is
insufficient evidence to conclude that the permeability of the human chorioamnion is greater at
term compared to earlier in pregnancy (12-26 weeks).

Despite what we might observe visually in the boxplots, the statistical test doesn’t support the
claim of higher permeability at term. This could be due to several factors:

1. Small sample sizes (only 10 term and 5 early samples)
2. High variability within the term group
3. The actual biological relationship might be more complex than our simple hypothesis
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💡 Question 1

Why might researchers choose a Mann-Whitney U test over a t-test in this situation? Con-
sider both the sample size and what you observed in the QQ plots.

💡 Question 2

What does the value “W = 31” in the test output represent? What information does it give us
about the comparison between the two groups?

Bonus take home exercises

Exercise 1: National RSPCA statistics
The RSPCA releases statistics on the number of animals they receive, reclaim and rehome every
year. In the 2023-24 financial year, the RSPCA received 17468 dogs, 26704 cats, and 37497 other
animals. The “other” category includes horses, small animals, livestock and wildlife.

Using the HATPC framework, test whether these animals were received in equal proportions.

received <- c(17468, 26704, 37497)

Exercise 2: UC Berkeley Admissions
For the two exercises we’re going to use simplified versions of the inbuilt dataset ‘UCBAdmis-
sions’, which has data on student admissions for Berkeley. The dataset shows how many students
were rejected and admitted to the university by both department and gender.

2.1 Admissions by department
Did every department at UC Berkeley admit students in equal proportions?

dept_admissions <- c(601, 370, 322, 269, 147, 46)

2.2 Gender differences in admissions
Are male and female students admitted and rejected in the same proportion?

gender <- as.table( #Make a table with values for each row
  rbind(
    admitted = c(1198, 557),
    rejected = c(1493, 1278)
  )
)

colnames(gender) <- c("Male", "Female") #Add column names to table
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